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We report on some extensive analyses of a recently proposed fadapowski, Phys. Rev. E60, 6255
(1999] with infinitely many absorbing states. By performing extensive Monte Carlo simulations, we have
determined critical exponents and shown strong evidence that this model is not in the directed percolation
universality class. The conjecture that this two-dimensional model exhibits a dimensional redoehaning
as one-dimensional directed percolaji@firmly disproven. The reason for the model not exhibiting standard
directed percolation scaling behavior is traced back to the existence of what veepatbbsorbing sites.e.,
absorbing sites that cannot be directly activated by the presence of neighboring activity in one or more than one
direction. Supporting this claim we present two strong evidengges one dimension, where superabsorbing
sites do not appear at the critical point, the system behaves as directed percolatigin) emd modified
two-dimensional variation of the model, defined on a honeycomb lattice, for which superabsorbing sites are
very rarely observed, directed percolation behavior is recovered. Finally, a parallel updating version of the
model exhibiting a nonequilibrium first-order transition is also reported.

PACS numbgs): 05.10.Ln, 05.50tq, 05.70.Fh, 05.70.Ln

[. INTRODUCTION case the exponents are also non-DP. A third and last example
is that of systems with many absorbing states in which the
Phase transitions separating active from fluctuation-fre@ctivity field is coupled to an extra conserved field. This type
absorbing phases appear in a vast group of physical phenor@if situation appears, for example, in conserved sandpile
ena and models as, for instance, directed percoldtig®, models, and has been recently shown to define a new univer-
catalytic reaction§3], the pining of surfaces by disordpt], ~ sality class[8,18]. Apart from these and some few other
the contact procesks], damage spreading transitiong], ~ Well-known exampleq19], systems with absorbing states
nonequilibrium wetting 7], or sandpile$8,9] See[1] and[2] ~ belong generically into the DP universality class.
for recent reviews. Classifying these transitions into univer- Recently, Lipowski has proposed a very simple, biologi-
sality classes is a first priority theoretical task. As conjec-Ccally motivated model, exhibiting a continuous transition
tured by Grassberger and Jans$&€@i] some time ago and into an absorbing phase, and claimed that this model shows a
corroborated by a very large number of theoretical studie§ort of “superuniversality,” i.e., in both one and two dimen-
and computer simulations, systems exhibiting a continuou§ions the model has the same critical exponents, namely,
transition into a unique absorbing state with no extra symihose of one-dimensional DP. Consequently, the system has
metry or conservation law belong to one and the same unip€en hypothesized to show a rather strange “dimensional
versality class, namely, that of directed percolatib®). At reduction” [20] in two dimensions. This conclusion, if con-
a field theoretical level this class is represented by thdirmed, would break the Grassberger-Janssen conjecture,
Reggeon field theoryRFT) [11]. since it is not clear that any new symmetry or extra conser-
This universality conjecture has been extended to includ¥ation law is present in this model. In what follows we show
multicomponent systemisl2] and systems with, an infinite the physical reasons why this model does not show directed
number of absorbing statg$3,14. On the other hand, some Percolation behavior: the presence of what we cadieera-
other, less broad, universality classes of systems with ad?sorbing sitess at the basis of this anomalous behavior. We
sorbing states have been identified in recent years. They aWill discuss also how DP can be restored by changing the
include some extra symmetry or conservation law, foreign tc@eometry of the lattice on which the model is defined.
the DP class. For example, if two symmetric absorbing states
exist (which in many cases is equivalent to having activity Il. MODEL
parity conservatiofil5]), the universality class is other than
DP, and the corresponding field theory differs from RFT The Lipowski model is defined operationally as follows:
[16]. A second example is constituted by systems with ablet us consider a squarddimensional lattice. At a bond
sorbing states in which fluctuations occur only at the interdinking neighboring sites,j, a random variablev=w;; is
faces separating active from absorbing regions, but not in thassigned. Different bonds are uncorrelated, arid distrib-
bulk of compact active regionéexamples of this are the uted homogeneously in the interJdl,1]. At each site one
voter modelor compact directed percolatidid7]). In this  definesr; as the sum of the four bonds connecting this site to
its four nearest neighbors. 1if is larger than a certain thresh-
old, r (that acts as a control parameténe site is declared
*Electronic address: phurtado@onsager.ugr.es active, otherwise the site is inactive or absorbing. Active
TElectronic address: mamunoz@onsager.ugr.es sites are considered unstable; at each step one of them is
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chosen randomly and its four associategl bond variables active sites,p(L,r,t), which for asymptotically large times
are replaced by four freshly chosen independent random vatonverges to a stationary valygL,r). Observe that for
ues(extracted from the same homogeneous probability dissmall system sizes the system always reaches an absorbing
tribution), and time is incremented by an amount &f configuration in finite time and therefore the only truly sta-
=1/n(t), wheren(t) is the number of active sites at that tionary state isp=0. In order to extrapolate the right
time. Critical exponents are defined as it is customary in th@symptotic behavior in the active phase one has to determine
realm of absorbing phase transitiofis. p(L,r) averaged over the runs that have not reached an ab-
It is clear that for small values of for instance =0, the  sorbing configuration. A peculiarity of this system is that its
system will always be active, while for large enough valuesconvergence toward a well-defined stationary state is very
of r an absorbing configuratiofwith r;<r for all sitesi) slow, fluctuations around mean values are extremely persis-
will be eventually reached. Separating these two regimes, wient and, therefore, a huge number of runs is needed in order
observe a critical value af, r., signaling the presence of a to obtain smooth evolution curves. Owing to this fact, nu-
continuous phase transition. th=1, r ,~0.4409[23], while ~ merical studies are rather costly from a computational point
for d=2 we find r,=1.38643%3). As bond variables are of view. The reasons underlying such anomalously long-
continuous, it is obvious that there is a continuous degenkved fluctuations will be discussed in forthcoming sections.
eracy of the absorbing statee., infinitely many absorbing The maximum times considered are<&80° Monte Carlo
configurationg steps per spin; this is one order of magnitude larger than
In the one-dimensional case, all the measured critical exsimulations presented i{i26]. Near the critical point the re-
ponents take the expected DP val(ig8], compatible with  laxation times are very largéarger than 18) and, in order
theoretical predictions for systems with many absorbinggo compute stationary averages, transient effects have been
stateq14,24. The only discrepancy comes from the fact thatcut off. We observe the presence of a continuous phase tran-
the spreading exponents and 6 (see Sec. IlI B for defini- sition separating the active from the absorbing phase at a
tions) appear to be nonuniversal, but the combinatiphd  value ofr~1.38.
coincides with the DP expectation. This nonuniversality in  Assuming that finite-size scaling holf8] in the vicinity
the spreading is, however, generic of one-dimensional syf the critical point pointr., we expect for values af<r
tems with an infinite number of absorbing states,24], and  (i.e., in the active phage
therefore it does not invalidate the conclusion that the system
behaves as DP. p(L)~L=AgLIAT™), D
In two dimensions the only measured critical exponent in
[26] is the order parameter ong, which has been reported where A=|r—r|. Right at the critical point, this corre-
to take a value surprisingly close to the one-dimensional DBponds to a straight line in a double logarithmic plot of
expectationg~0.27 [26]. Based on this observation, Lip- p(L,r) vsL. In Fig. 1 it can be seen that, in fact, we observe
owski claimed that the system exhibits a sort of dimensionaf straight line as a function of lggL) for r=1.38 643(3)
reduction. This possibility would be very interesting from athat constitutes our best estimation f. This finite-size
theoretical point of view and elucidating it constitutes theanalysis allows us to determimg with much better precision
main original motivation of what follows. than in the previous estimatiofiz6]. From the slope of the
Finally, let us mention that for spreading experiments itprevious log-log plot we measum/ v, =0.572), which is
was found that, as happens generically in two-dimensionadjuite far from both the one-dimensional DP exponghi,
systems with many absorbing stafed,27, the critical point  =0.2520(1) and the two-dimensional value 0.7®p
is shifted, and its location depends on the nature of the ab- We have considered the larger available system kize
sorbing environment that the initial seed spreads in. In par=256 and studied the time decay of a fully active initial state
ticular, the annular type of growth described in R&6] in  for values ofr close tor. in the active phasésee Fig. 2
the case of spreading into a favorable media is typical offhe stationary values for large values to§hould scale as
spreading in two-dimensional systems with many absorbing(L,r)~A(L)”. From the best fit of our dat@ee Fig. 3we
states, and it is well known to be described by dynamicaletermine bothr .(L=256)~1.38645 and3=0.402). At
percolation[24,27. the critical point, p(r=r.,t)~t"%. From the asymptotic
slope of the curve for (L=256) in Fig. 2, we measuré
=0.275(15). In this way, we have already determined three
independent exponents. From these, using scaling laws, we
In order to obtain reliable estimations férand determine can determine others, as for example =g/(8/v,)
other exponents, we have performed extensive Monte Carle: 0.69(9) (to be compared with the DP prediction 1.09 in
simulations ind=2 combined with finite-size scaling analy- d=1 and 0.733 in two dimensio&9]).
sis, as well as properly defined spreading experiments. To further verify the consistency of our results, we have
consideredp(L,r) computed for different values afandL
and assumed that(L,r)L#*: depends om andL through
the combinationL¥”:A [1]. In Fig. 4, we show the corre-
We have considered a square lattice with linear dimensiosponding data collapse, which is rather good when the pre-
L ranging from 32 to 256. Averages are performed over aviously reported values g8 andv, are used. In the inset, we
number of independent runs ranging front 10 1¢° depend-  verify that the data points are broadly scattered when one-
ing on the distance to the critical point and on system sizedimensional DP exponent values are considered, showing
The first magnitude we measure is the averaged density dhat the dimensional reduction hypothesis is not valid. Data

I1Il. MODEL ANALYSIS

A. Finite-size scaling analysis
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FIG. 1. Density of active sites as a function bof(the linear FIG. 2. Time evolution of the density of active sites for

system sizgfor different values of: from top to bottom, 1.386 30, =256 and diffirent values af in the active phase, namely, from
1.38640, 1.38643, 1.38645, and 1.38650, respectively. ThiOP {0 bottomr=1.38143, 1.38402, 1.38527, 1.38587, 1.386 16,
straight solid line corresponds to the critical point, 1.386 30, 1.386 37, and 1.386 40, respectively. From the slope of

=1.386433). the straight dashed line we estimate 0.275(15).

collapse is also not observed using two-dimensional DP exone could start the system with some highly active configu-
ponents; this provides strong evidence that we are in th&tion and run the system right at the critical point; once it
presence of anomalouson-DP scaling behavior. Finally, reaches an absorbing configuration it can be taken as a natu-
let us remark that the observed scaling does not extend ovédl or self-generated environment for spreading. An alterna-
many decades for any of the computed steady-state magrive, more efficient way of proceeding, inspired in sandpile
tudes. Much better scaling is observed for spreading expdsystemg8], is as follows. One considers an arbitrary absorb-

nents as will be shown in the following section. ing configuration and runs a spreading experiment. Once the
epidemic(or “avalanche” in the language of self-organized

criticality [8]) is over, one considers the newly reached ab-
sorbing configuration as the initial state for a new spreading
In order to further verify and support our previous con-experiment avalanche. After iterating this process a number
clusion, we have also performed spreading experiments as @ times the system reaches a statistically stationary absorb-
customarily done in systems with absorbing stdt&3,1]. ing state; the natural onésee[8] and references thergin
These consist of locating a seed of activity at the center of akJsing this absorbing state for spreading leads to DP expo-
otherwise absorbing configuration and studying how itnent valuegand critical point in systems with many absorb-
spreads on average in that mediiydl. In the absorbing ing states as for example, the pair contact pro¢25s31.
phase the seed dies exponentially fast, propagates indefi- By following this procedure, we have found a very pecu-
nitely in the active phase, while the critical point corresponddiar property of this model that we believe to be at the basis
to a marginal(power-law propagation regimégl]. of its deviating from DP. If the initial seed is located for all
As stated before, it is well established that two-avalanches in the same siter small group of localized
dimensional systems with an infinite number of many ab-ite9, as is usually the case, after a relatively small number
sorbing states show some peculiarities in studies of thef avalanches the system reaches an absorbing configuration
spreading of a localized activity seed. The absorbing envisuch that it is impossible to propagate activity for any pos-
ronment surrounding the seed can either favor or not favosible forthcoming avalanche beyond a certain closed contour.
the propagation of activity depending on its natisee For example, configurations as the one shown in Fig. &e
[24,27), and references therginFor the so-callechatural  generated. The four sites at the center are the ones at which
initial conditions[1], the critical point for spreading coin- activity seeds are placed in order to start avalanches. White
cides with the bulk critical point, and standard DP exponentsites are active and gray ones are absorbing. At each marked-
are expected. In order to generate such natural configuratioms-black site, the sum of the thréklack bonds connecting it

B. Spreading experiments and superabsorbing states
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FIG. 3. Stationary density of active sites as a function of the

distance to the critical point, fdr=256 and different values afin

the active phaséthe same values reported in Fig. Zhe best fit

gives3=0.40(2) and (L =256)~1.386 45. Filledempty) circles

are used to represent scalifigpt scaling points.

FIG. 4. Data collapse for the density of active sitps(L,A)
=p(L,A)LP"s andA’=ALY":. Using the obtained exponent val-
uesB/v, ~0.57 andv, ~0.69, a reasonably good data collapse is
observed. In the inset we show an attempt to collapse data using
one-dimensional DP exponent values. There is ho evidence of scal-
ing neither in this case nor using two-dimensional DP exponents.
to sites other than a central one is smaller than-1
=0.386433). In this way, regardless of the value of the alternatively, whenever a linear distancé from the ava-
bond connecting the site to the central region, the site relanche origin is reached. Observe that in the second case the
mains inactive; it is auperabsorbing siteThe existence of dynamics has to be run farther in order to reach a new ab-
“inactive forever” sites has been already pointed out by Li- Sorbing configuration at which to launch the next avalanche.
powski[26,32. In the configuration shown in Fig.(&, ac- We monitor the following magnitudes: the total number
tivity cannot propagate out of the “fence” of superabsorbing Of active sites in all the runs as a function of tilNgt) (we
sites; the cluster of superabsorbing sites will remain frozer@lso estimatéNy(t) defined as the average number of active
indefinitely, and activity cannot possibly spread out. All ava-Sites restricted to surviving rupsthe surviving probability
lanches will necessarily die after a few time steps. This typd®(t), and the average square distance from the orRfit).
of blocking structure is quite generic and appears in all exAt the critical point these are expected to scaleN{($)
periments after some relatively short transient. In conclusion;-t”, P(t)~t~° and R*(t)~t* Results for these types of
this way of iterating spreading experiments leads always téneasurements are reported in Fig. 6. We obtain rather good
blocking closed configurations of superabsorbing sites inalgebraic behaviors at the previously estimated critical point
stead of driving the system to a natural absorbing configuratc, confirming that the iteration-of-avalanches procedure
tion. leads the system to a natural absorbing environment. Slightly

Observe that some activity put out of a blocking fence ofsubcritical(supercritical values ofr generate downwar@ip-
sites in Fig. %a) could well affect any of the external bonds ward curvatures in this plot for all the four magnitudes. Our
of the superabsorbing sitgthe dangling black bonds in Fig. best estimates for the exponents at criticality aee:
5(a)], converting the corresponding site to an absorbing o=0.961), »=0.051), 5=0.66(1)(see Table)l To double
even an active one. Therefore, in order to overcome thisheck our results we also pldts(t), which is expected to
difficulty of the frozen blocking configurations and be able toscale with an exponeng+ 8. An independent measurement
perform spreading experiments in some meaningful way, wef its slope in the log-log plot giveg+ §=0.71(1), in per-
iterate avalanches by locating the initial seed at randomlyect agreement with the previously obtained results.
chosen sites in the lattice. In this way there is always a non- We can use these values to verify the hyperscaling rela-
vanishing probability of destroying blocking “fences” by tion [33,24
breaking them from outside as previously discussed. Mea-
surements of the different relevant magnitudes are stopped

dz
when the system falls into an absorbing configuration or, mt ot 0:7' 2
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FIG. 6. Numerical results for spreading experimeR&t) (top-
FIG. 5. Different frozen configurations of superabsorbing most curvg, Ng(t) (second curve from aboyeN(t) (third curve
(black sites. White(gray) color stands for activéabsorbing sites. ~ from above, andP(t) (bottom curve. From the slopes we estimate
(a) Blocking configuration for spreading from the central cluster of z=0.96(1) andyn+ 6=0.71(1), »=0.051), and6=0.6§1), re-

four sites. Black sites cannot change their state whatever the state spectively.
dynamics inside the cluster might be. Black bonds remain also fro-

zen. (b) Spanning frozen cluster of superabsorbing sités. Having stated the existence of frozen clusters in standard
Almost-frozen cluster of superabsorbing sites. This, and analogouspreading experimenisvhen initialized from a fixed local-
structures, can be destabilized from the outside corners. ized set of sitels one may wonder whether there are similar

frozen structures in simulations started with an homogeneous

Substituting the found values farand n+ S, we obtainé initial distribution of aCtiVity, or in the modified type of
~0.252), compatible within error bars with the previously SPreading experiments we have just useel, allowing the
determined valug=0.275(15). initial seed to land at a randomly chosen kite the neigh-
One more check of the consistency of our results by usingorhood of the critical point.
scaling laws is the following. Ag=2v, /v [29], we can In principle, for any finite lattice, the answer to that ques-
estimater from zand v, . Then, usingy| and the fact that tion is affirmative. In Fig. #) we show the shape of a frozen
6= Bl v we obtaind=0.27(1), again in excellent agreement cluster of superabsorbing sites: any of the sites in it is super-
with the directly measured value. absorbing with respect to the corresponding outward direc-
In Table I, we present the collection of exponents andion, and it cannot be “infected” from any of the other di-
compare them with DP values in both one and two dimen/€ctions as neighboring sites are similarly superabsorbing. If
sions[29]. There is no trace of dimensional reduction; this@ cluster like that is formedor put by hand on the initial
model does not behave, at least up to the scales we hawatd it will remain superabsorbing forever. However, the
analyzed, as any other known universality class. probability of forming such a perfectly regular chain is ex-

TABLE I. Exponent values for the two-dimensional Lipowski
C. More about superabsorbing states model and directed percolation in both one and two dimensions.

Let us recall our definition of superabsorbing states AFigures in parentheses denote statistical uncertéimtie that error

site, three of whose associated bonds take values such t rs are staFisticaI errors coming from power-lavy fittings, aqd there-
the sum of them is smaller that-1, cannot be activated ore do not include eventual systematic corrections to scaling

from the remaining direction by neighboring activity. We say Model P
that this site is superabsorbing in that direction it is in a
superabsorbing stateA site can be superabsorbing in one or Lipowski 0.40(2) 0.57(2) 0.275(15) 0.05(1) 065 0.96(1)
more than one directions. Still, a site in a superabsorbin@p,d=1 0.276 0.252 0.159 0.313 0.159 1.265
state can obviously be activated by neighboring activity inpp,d=2 0.583 0.795 0.450 0.229 0450 1.132
any of the remaining direction@f any).

Blv, 6 7 1) z
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absorbing region by a line of superabsorbing-in-the-
direction-of-the-activity sites. In order to reach the absorbing
region, activity has to circumvent the superabsorbing barrier.
But near the critical point, where activity is scarce, barriers
of superabsorbing sites are intertwisted among them forming
structures that, even if not completely frozen, are very un-
likely to be infected. Activity has to overcome them progres-
sively in order to reach the interior of superabsorbing re-
gions. This resembles some aspects of glassy systems for
which degrees of freedom are hierarchically coupled and, at
observable timescales, they may appear effectively frozen
[34].

This phenomenology is certainly very different from DP,
and it is the reason why the relaxation toward stationary
states is so slow, and why deviations from mean values are
S0 persistent in humerical simulations. In particular, as su-
perabsorbing regions are long-lived, the time required for the
system to self-average is very large, and as near the critical
point the probability of reaching an absorbing state is large,
in practice, the system does not have the time to self-average.
Consequently, a huge amount of independent initial states

FIG. 7. Snapshot of a configuration in a>332 lattice in the and runs have to be considered in order to measure smooth
stationary regime for a value ofclose to the critical point. White Well-behaved physical magnitudg35]. We strongly believe
color denotes activity, black corresponds to superabsorbing siteghat this type of pathological dynamics is responsible for the
while gray stands for absorbing sites. Observe that superabsorbirdgparture of the Lipowski model from the DP universality
sites percolate through the lattice. class in two dimensions.

At this point one might wonder whether the one-

tremely small for large system sizes. Observe also that igjimensjonal version of this model is essentially different. Or
order to have a completely frozen two-site broad-band struGy gther words, why(one-dimensional DP exponents are
ture it has to be unlimitedly londor closed if periodic  ohserved ind=1 [23]2 The answer to this question is not
boundary conditions are employedf instead it was finite,  gitficylt if one argues in terms of superabsorbing sites. First
then sites at the corners would be linked to two external; 4| notice that ind=2. r.>1. This means that just by

» ¢ .

susceptible_—to-change bonds a_lnd, therefore, these sites WOLEHanging one bond, whatever the value of the output is, the
be susceptible to become active because they would not Rgie can stay below threshold if the other three bonds sum
blocked forever. In this way any finite structure of superab-,¢q tharr ,— 1; this is to say superabsorbing states do exist

sorbing sites in the square lattice is unstable. It can be eatep criticality. However ind=1, r,=0.4409<1. In this case
. y Cc . . )

up (though very SlOWIy by the dynamics and is therefore nqt by changing one bond value it is always possible to activate

g . the corresponding site: superabsorbing sites do not exist in
represented in Fig.(6) is aimost frozen but not really frozen _1 4t the critical poinf36]. Once the “disturbing” ingre-

as it may lose its. superabsork_)ing character from the OUtSid&Tent is removed from the model, we are back to the DP class
corners as previously described. Analogously, any othe‘rj1 '

cluster shape of superabsorbing sites may be destabilizeg general principles dictate.
from its outside corners.

In conclusion, frozen clusters of superabsorbing sites do
not appear spontaneously. However, almost-frozen regions In order to further test our statement that superabsorbing
do appear and may have extremely long life spans, especialtates are responsible for the anomalous scaling of the two-
close to the critical point where activity is scarce, and theredimensional Lipowski model, we have studied the following
fore the possibility of destabilizing them is small. In order to variation of it. We have considered the model defined on a
give an idea of how frequently superabsorbing sites appeahoneycomb latticéwith three bonds per siteand performed
we present in Fig. 7 a snapshot of a typical system state nedonte Carlo simulations. In this case there is (geometri-
the critical point. White corresponds to active sites, while thecal) possibility of having completely frozen clusters of su-
remaining sites are absorbing: in black we represent supeperabsorbing siteee Fig. 8 The main geometrical differ-
absorbing(in one or more directionssites, while simple ab- ence from the previous case comes from the fact that here
sorbing (nonsuperabsorbingites are marked in gray color. cluster corners are linked only to one external bond, and
Observe that superabsorbing sites are ubiquitous; in fact theerefore are more prone to form frozen clusters. In prin-
percolate through the system. Among them, about one-fourthiple, before performing any numerical analysis, there are
are superabsorbing in all four directions. two alternative possibilities: either the critical point is lo-

Even though none of the clusters of superabsorbing sitesated at a value af smaller than one or larger than one. In
is completely frozen, and in principle, activity could reach the first case, there would be no superabsorbing(isitanal-
any lattice site, the dynamics glassy[34] in some sense. o0gy with the one-dimensional casén the second case, pa-
For instance, imagine an active region separated from athologies associated with superabsorbing sites should be ob-

D. The honeycomb lattice
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However, strictly speaking, the system should exhibit a
(unobservable first-order phase transition at=1 in the
thermodynamic limit. Indeed, for values plarger than one
there is a finite, though extremely small, probability of cre-
ating frozen clusters of superabsorbing sitas the one in
Fig. 8). As this is an irreversible process, after sofder-
gently long transient there would be a percolating network
of frozen clusters of superabsorbing sites, and the only pos-
sible stationary state would be an absorbing one with zero
activity. On the other hand, for values ofsmaller than
unity, the probability of creating superabsorbing sites is
strictly zero, and there will be a nonvanishing density of
activity. As the density at =1, almost independent of sys-
tem size, isp~0.18, the transition is expected to be discon-
tinuous, and therefore the DP transition observed in our
simulations is merely a finite-size effect, and should disap-
pear for large enough sizes and long times. In any case, this
first-order transition is unobservable computationally.

Active sites

Superabsorbing
sites

|

Absorbing sites

PN

IV. SUMMARY

FIG. 8. Frozen cluster in the honeycomb lattice. This type of = g, nming yp, we have shown that the two-dimensional
frozen structure of superabsorbing sites remains indefinitely super-

absorbing at the critical point. Black: superabsorbing sites. Gray!‘lp()WSkI model does not bglong to a'nly known universality
absorbing sites. White: active sites. cl_ass. We have mgasureq different critical exponents by run-
ning Monte Carlo simulations started from homogeneous ini-
tial states and also by performing spreading experiments. In
served. The case.=1 would be marginal. Finite-size any case, we find absolutely no trace of dimensional reduc-
scaling analyses indicate the presence of a continuous phagen, and neither is there evidence for the system to behave as
transition located at~1.0092 (very nearby the marginal two-dimensional DP. Instead, a different type of scaling be-
case, but significantly larger thar=1). havior is observed. The main relevant physical ingredient of
For Monte Carlo simulations, we have employed latticesthis class is the presence of superabsorbing sites, and almost-
of up to a maximum of 258256 sites. All the observed frozen clusters of superabsorbing sites that slow down enor-
phenomenology is perfectly compatible with two- mously the dynamics.
dimensional DP behavior. The dynamics does not show any The previous conclusion is strongly supported by two
of the anomalies described for the square lattice case. IRther observationsi) the regular DP behavior observed in
particular, from the dependence of the stationary activitytn® one-dimensional version of the model for which super-
density on system size we evalug@ér=0.801); from the a.bsorbl.ng states do not appear at criticality, an)dthe two-
time decay at criticality, 6=0.451), and finally B dimensional DP behavior observed for the two-dimensional

model defined on a honeycomb lattice, for which the prob-

=0.572); fully confirming consistency with two- - : . ; AR
. ) . . . ability of generating superabsorbing sites at criticality is al-
dimensional DP behavior. This result seems to be in contraﬁmSt negligible

diction with the two alternative possibilities presented above. In general, superabsorbing sites can either arrange into

Let us now discuss why this is the case. completely frozen clusters or not depending on dimensional-
As the coordination number is three in this case, the sufyy ~ cqordination number and other system details. Let us

of two bond values has to be smaller thgr- 1~0.0092 in distinguish three main cases.

order to have a superabsorbing site in the direction of the (1) When completely frozen clusters of superabsorbing

remaining bond at Crltlcallty As the two bonds are indepen'sites appear be|0\60r abové a certain value of the control

dent random variables, the probability of creating a superabparameter but not abovéelow), first-order transitions are

sorbing site if the two of them are changed is fewer tharexpectedas occurs in the multiplicative model discussed in

0.5% and the probability of generating frozen clustem-  Appendix B[32]).

posed by six neighboring superabsorbing sites as shown in (2) If completely frozen clusters do not appear at critical-

Fig. 8 is negligible at the critical point. In fact, we have not ity, but instead almost-frozen clusters are present, we expect

been able to observe any of them in our simulations. Thisnomalous behaviofas occurs in the original Lipowski

means that one should study extremely large system sizasodel[26]).

and extraordinarily long simulations in order to see anoma- (3) If neither frozen nor almost-frozen clusters are ob-

lies associated with superabsorbing sites, otherwise, for anserved at criticality(as is the case for the one-dimensional

feasible simulation the behavior is expected to be DP-likeversion of the model23]) we expect standard directed per-

The observation of DP exponents in this case strongly supeolation behavior.

ports the hypothesis that superabsorbing states are at the ba-Two possible followups of this work are the following.

sis of the anomalous behavior of the model on the square (1) It would be worth studying in more realistic situations

lattice. as, for instance, in surface cataly$tmer-dimer or dimer-
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anomalies described in this paper are relevant in the limit of
extremely large times and system sizes.
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APPENDIX A

As an alternative attempt to speed up the dynamics, and
01

examine further some properties of the two-dimensional
model, we have implemented the microscopic dynamics re-
placing the original sequential updating by a synchronous or
parallel one, i.e., all active sites are “deactivated” simulta-
neously at each Monte Carlo step, and all their associated
bonds are replaced by new random variables simultaneously.
In this way, as random numbers do not have to be extracted
to sequentially select sites, the dynamics is largely acceler-
ated. For this modified dynamics, we have examined some
r relatively large system sizek=256, and concluded that the
FIG. 9. Order parameter as a functionrah the case of parallel nature of _the transition i_s changed with rgspe_ct t_o the sequen-
updating. The transition appears to be discontinuous in this casé',al,Updatmg case. In this case the transition is first or'de.r and
exhibiting also a hysteresis loop. crltlcal_ exponents cannot be deflne_d. To shov_v _that this is the
case, in Fig. 9 we present the stationary activity curve. The

) o upper curve corresponds to simulations performed taking an
trimer) models [13] whether effects similar to those de- jnjtial activity density equal to unity. On the other hand, the

scribed in this paper play any relevant role. In particular, foriower curve is obtained by starting the system with a natural
those models depending upon lattice and particle geometrbsorbing configuration, and activating on the top of it a
there are cases in which activity cannot propagate to neighsmall percentage of sitéabout 10%).

boring regions but is constrained to evolve following certain  For values ofr in the interval[ ~1.545~1.555| the sys-
directions or paths. It would be rather interesting to sort outem reaches different states depending upon the initial con-
whether anomalies reported for those modi&® are related dition. The presence of a hysteresis loop is a trait of the
to the existence of superabsorbing states. transition first-order nature. First-order absorbing-state tran-

(2) From a more theoretical point of view, an interesting sitions have been observed in other cont¢3@. However,

question is the following: What is the field theory or Lange-We caution the reader that, as the transition is found to occur
vin equation capturing the previously described phase trart a value of for which the probability of creating superab-
sition with superabsorbing states? How does it change wit§orbing sites is very largenuch larger than in the sequential
respect to Reggeon field theory? Establishing what thi§2s¢, and the dynamics is therefore extremely anomalous
theory looks like would clarify greatly at a field theoretical @1d slow, it could be the case that the first-order character of
level the effect of superabsorbing states on phase transition§!€ transition is only apparent. Extracting clean, conclusive
and would permit to shed some light on the degree of uni_results in the critical zone is a computationally very expen-
versality of this anomalous phenomenology. Our guess ig'Ve task that we have not pursued.
that a Reggeon field theofyl1,10 with a spatiotemporal APPENDIX B

dependent anisotropic Laplacian tefmhich, for example,

would enhance, not favor or forbid diffusion from certain  Very recently, Lipowski has introduced a multiplicative
sites in certain directionscould be a good candidate to de- version of his model on the square lattice in which sites are
scribe this new phenomenology. Analogously to what hapdeclared active if the product of the four adjacent bonds is
pens in field-theoretical descriptions of other systems wittsmaller than a certain value of the control parametgg2].
many a absorbing state$13,24], the inhomogeneous Bonds take uncorrelated values in the interfal0.5,0.5
Laplacian-term coefficient should be described by a secondxtracted from a homogeneous distribution. For values of
physical field coupled to the activity field in such a way thatsmaller tharr =0 there is a finitgnot smal) probability of

its fluctuations would vanish upon local absence of activity.generating superabsorbing sites. In this case, it is not difficult
Further pursuing this line of reasoning is beyond the scope afo see that isolated superabsorbing sites remain frozen for-
the present paper. As long as this program has not beeswver. In analogy to the discussion of the honeycomb-lattice
completed, is not safe to conclude unambiguously that thenodel, a first-order transition is expectedrat=0 (as dis-

1.54 1.545 1.55 1.5655 1.56
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cussed also ih32]). However, in this case, as the probability is no diverging correlation length, b& is claimed to be,

of creating superabsorbing sites is not negligible, the firsthowever, in the two-dimensional DP class. Our guess is that
order transition is actually observable. Based on a numericahis apparent puzzle is simply due to a numerical coincidence
measurement g8, Lipowski concludes that the model sharesand that in fact there is no trait of any second-order phase
first-order properties with second-order features. In particutransition featurgobserve that the fit for beta {f82] spans

lar, the transition is clearly shown to be discontinuous, therdor less than half a decade in the abscise of the log-log.plot
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