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Systems with superabsorbing states
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We report on some extensive analyses of a recently proposed model@A. Lipowski, Phys. Rev. E60, 6255
~1999!# with infinitely many absorbing states. By performing extensive Monte Carlo simulations, we have
determined critical exponents and shown strong evidence that this model is not in the directed percolation
universality class. The conjecture that this two-dimensional model exhibits a dimensional reduction~behaving
as one-dimensional directed percolation! is firmly disproven. The reason for the model not exhibiting standard
directed percolation scaling behavior is traced back to the existence of what we callsuperabsorbing sites, i.e.,
absorbing sites that cannot be directly activated by the presence of neighboring activity in one or more than one
direction. Supporting this claim we present two strong evidences:~i! in one dimension, where superabsorbing
sites do not appear at the critical point, the system behaves as directed percolation, and~ii ! in a modified
two-dimensional variation of the model, defined on a honeycomb lattice, for which superabsorbing sites are
very rarely observed, directed percolation behavior is recovered. Finally, a parallel updating version of the
model exhibiting a nonequilibrium first-order transition is also reported.

PACS number~s!: 05.10.Ln, 05.50.1q, 05.70.Fh, 05.70.Ln
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I. INTRODUCTION

Phase transitions separating active from fluctuation-f
absorbing phases appear in a vast group of physical phen
ena and models as, for instance, directed percolation@1,2#,
catalytic reactions@3#, the pining of surfaces by disorder@4#,
the contact process@5#, damage spreading transitions@6#,
nonequilibrium wetting@7#, or sandpiles@8,9# See@1# and@2#
for recent reviews. Classifying these transitions into univ
sality classes is a first priority theoretical task. As conje
tured by Grassberger and Janssen@10# some time ago and
corroborated by a very large number of theoretical stud
and computer simulations, systems exhibiting a continu
transition into a unique absorbing state with no extra sy
metry or conservation law belong to one and the same
versality class, namely, that of directed percolation~DP!. At
a field theoretical level this class is represented by
Reggeon field theory~RFT! @11#.

This universality conjecture has been extended to incl
multicomponent systems@12# and systems with, an infinite
number of absorbing states@13,14#. On the other hand, som
other, less broad, universality classes of systems with
sorbing states have been identified in recent years. The
include some extra symmetry or conservation law, foreign
the DP class. For example, if two symmetric absorbing sta
exist ~which in many cases is equivalent to having activ
parity conservation@15#!, the universality class is other tha
DP, and the corresponding field theory differs from RF
@16#. A second example is constituted by systems with
sorbing states in which fluctuations occur only at the int
faces separating active from absorbing regions, but not in
bulk of compact active regions~examples of this are the
voter modelor compact directed percolation@17#!. In this
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PRE 621063-651X/2000/62~4!/4633~9!/$15.00
e
m-

-
-

s
s
-
i-

e

e

b-
all
o
s

-
-
e

case the exponents are also non-DP. A third and last exam
is that of systems with many absorbing states in which
activity field is coupled to an extra conserved field. This ty
of situation appears, for example, in conserved sand
models, and has been recently shown to define a new un
sality class@8,18#. Apart from these and some few othe
well-known examples@19#, systems with absorbing state
belong generically into the DP universality class.

Recently, Lipowski has proposed a very simple, biolo
cally motivated model, exhibiting a continuous transitio
into an absorbing phase, and claimed that this model sho
sort of ‘‘superuniversality,’’ i.e., in both one and two dimen
sions the model has the same critical exponents, nam
those of one-dimensional DP. Consequently, the system
been hypothesized to show a rather strange ‘‘dimensio
reduction’’ @20# in two dimensions. This conclusion, if con
firmed, would break the Grassberger-Janssen conjec
since it is not clear that any new symmetry or extra cons
vation law is present in this model. In what follows we sho
the physical reasons why this model does not show direc
percolation behavior: the presence of what we calledsupera-
bsorbing sitesis at the basis of this anomalous behavior. W
will discuss also how DP can be restored by changing
geometry of the lattice on which the model is defined.

II. MODEL

The Lipowski model is defined operationally as follow
let us consider a squared-dimensional lattice. At a bond
linking neighboring sitesi , j , a random variablew5wi j is
assigned. Different bonds are uncorrelated, andw is distrib-
uted homogeneously in the interval@0,1#. At each sitei one
definesr i as the sum of the four bonds connecting this site
its four nearest neighbors. Ifr i is larger than a certain thresh
old, r ~that acts as a control parameter! the site is declared
active, otherwise the site is inactive or absorbing. Act
sites are considered unstable; at each step one of the
4633 ©2000 The American Physical Society
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4634 PRE 62PABLO I. HURTADO AND MIGUEL A. MUÑOZ
chosen randomly and its four associatedwi j bond variables
are replaced by four freshly chosen independent random
ues~extracted from the same homogeneous probability
tribution!, and time is incremented by an amount ofDt
51/n(t), where n(t) is the number of active sites at th
time. Critical exponents are defined as it is customary in
realm of absorbing phase transitions@1#.

It is clear that for small values ofr, for instancer 50, the
system will always be active, while for large enough valu
of r an absorbing configuration~with r i,r for all sites i )
will be eventually reached. Separating these two regimes
observe a critical value ofr, r c , signaling the presence of
continuous phase transition. Ind51, r c'0.4409@23#, while
for d52 we find r c51.386 43(3). As bond variables are
continuous, it is obvious that there is a continuous deg
eracy of the absorbing state~i.e., infinitely many absorbing
configurations!.

In the one-dimensional case, all the measured critical
ponents take the expected DP values@23#, compatible with
theoretical predictions for systems with many absorb
states@14,24#. The only discrepancy comes from the fact th
the spreading exponentsh and d ~see Sec. III B for defini-
tions! appear to be nonuniversal, but the combinationh1d
coincides with the DP expectation. This nonuniversality
the spreading is, however, generic of one-dimensional
tems with an infinite number of absorbing states@25,24#, and
therefore it does not invalidate the conclusion that the sys
behaves as DP.

In two dimensions the only measured critical exponen
@26# is the order parameter one,b, which has been reporte
to take a value surprisingly close to the one-dimensional
expectationb'0.27 @26#. Based on this observation, Lip
owski claimed that the system exhibits a sort of dimensio
reduction. This possibility would be very interesting from
theoretical point of view and elucidating it constitutes t
main original motivation of what follows.

Finally, let us mention that for spreading experiments
was found that, as happens generically in two-dimensio
systems with many absorbing states@24,27#, the critical point
is shifted, and its location depends on the nature of the
sorbing environment that the initial seed spreads in. In p
ticular, the annular type of growth described in Ref.@26# in
the case of spreading into a favorable media is typica
spreading in two-dimensional systems with many absorb
states, and it is well known to be described by dynami
percolation@24,27#.

III. MODEL ANALYSIS

In order to obtain reliable estimations forb and determine
other exponents, we have performed extensive Monte C
simulations ind52 combined with finite-size scaling analy
sis, as well as properly defined spreading experiments.

A. Finite-size scaling analysis

We have considered a square lattice with linear dimens
L ranging from 32 to 256. Averages are performed ove
number of independent runs ranging from 102 to 105 depend-
ing on the distance to the critical point and on system s
The first magnitude we measure is the averaged densit
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active sites,r(L,r ,t), which for asymptotically large times
converges to a stationary valuer(L,r ). Observe that for
small system sizes the system always reaches an abso
configuration in finite time and therefore the only truly st
tionary state isr50. In order to extrapolate the righ
asymptotic behavior in the active phase one has to determ
r(L,r ) averaged over the runs that have not reached an
sorbing configuration. A peculiarity of this system is that
convergence toward a well-defined stationary state is v
slow, fluctuations around mean values are extremely per
tent and, therefore, a huge number of runs is needed in o
to obtain smooth evolution curves. Owing to this fact, n
merical studies are rather costly from a computational po
of view. The reasons underlying such anomalously lon
lived fluctuations will be discussed in forthcoming section
The maximum times considered are 83105 Monte Carlo
steps per spin; this is one order of magnitude larger t
simulations presented in@26#. Near the critical point the re-
laxation times are very large~larger than 105) and, in order
to compute stationary averages, transient effects have b
cut off. We observe the presence of a continuous phase t
sition separating the active from the absorbing phase
value of r'1.38.

Assuming that finite-size scaling holds@28# in the vicinity
of the critical point pointr c , we expect for values ofr ,r c
~i.e., in the active phase!

r~L,r !;L2b/n'G~L/D2n'!, ~1!

where D5ur 2r cu. Right at the critical point, this corre
sponds to a straight line in a double logarithmic plot
r(L,r ) vs L. In Fig. 1 it can be seen that, in fact, we obser
a straight line as a function of log10(L) for r 51.38 643(3)
that constitutes our best estimation ofr c . This finite-size
analysis allows us to determiner c with much better precision
than in the previous estimations@26#. From the slope of the
previous log-log plot we measureb/n'50.57(2), which is
quite far from both the one-dimensional DP exponentb/n'

50.2520(1) and the two-dimensional value 0.795(5).
We have considered the larger available system sizL

5256 and studied the time decay of a fully active initial sta
for values ofr close tor c in the active phase~see Fig. 2!.
The stationary values for large values oft should scale as
r(L,r );D(L)b. From the best fit of our data~see Fig. 3! we
determine bothr c(L5256)'1.386 45 andb50.40(2). At
the critical point, r(r 5r c ,t);t2u. From the asymptotic
slope of the curve forr c(L5256) in Fig. 2, we measureu
50.275(15). In this way, we have already determined th
independent exponents. From these, using scaling laws
can determine others, as for examplen'5b/(b/n')
50.69(9) ~to be compared with the DP prediction 1.09
d51 and 0.733 in two dimensions@29#!.

To further verify the consistency of our results, we ha
consideredr(L,r ) computed for different values ofr andL
and assumed thatr(L,r )Lb/n' depends onr and L through
the combinationL1/n'D @1#. In Fig. 4, we show the corre
sponding data collapse, which is rather good when the p
viously reported values ofb andn' are used. In the inset, w
verify that the data points are broadly scattered when o
dimensional DP exponent values are considered, show
that the dimensional reduction hypothesis is not valid. D
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PRE 62 4635SYSTEMS WITH SUPERABSORBING STATES
collapse is also not observed using two-dimensional DP
ponents; this provides strong evidence that we are in
presence of anomalous~non-DP! scaling behavior. Finally,
let us remark that the observed scaling does not extend
many decades for any of the computed steady-state ma
tudes. Much better scaling is observed for spreading ex
nents as will be shown in the following section.

B. Spreading experiments and superabsorbing states

In order to further verify and support our previous co
clusion, we have also performed spreading experiments
customarily done in systems with absorbing states@30,1#.
These consist of locating a seed of activity at the center o
otherwise absorbing configuration and studying how
spreads on average in that medium@1#. In the absorbing
phase the seed dies exponentially fast, propagates in
nitely in the active phase, while the critical point correspon
to a marginal~power-law! propagation regime@1#.

As stated before, it is well established that tw
dimensional systems with an infinite number of many a
sorbing states show some peculiarities in studies of
spreading of a localized activity seed. The absorbing en
ronment surrounding the seed can either favor or not fa
the propagation of activity depending on its nature~see
@24,27#, and references therein!. For the so-callednatural
initial conditions @1#, the critical point for spreading coin
cides with the bulk critical point, and standard DP expone
are expected. In order to generate such natural configura

FIG. 1. Density of active sites as a function ofL ~the linear
system size! for different values ofr: from top to bottom, 1.386 30,
1.386 40, 1.386 43, 1.386 45, and 1.386 50, respectively.
straight solid line corresponds to the critical pointr c

51.386 43(3).
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one could start the system with some highly active confi
ration and run the system right at the critical point; once
reaches an absorbing configuration it can be taken as a n
ral or self-generated environment for spreading. An alter
tive, more efficient way of proceeding, inspired in sandp
systems@8#, is as follows. One considers an arbitrary abso
ing configuration and runs a spreading experiment. Once
epidemic~or ‘‘avalanche’’ in the language of self-organize
criticality @8#! is over, one considers the newly reached a
sorbing configuration as the initial state for a new spread
experiment avalanche. After iterating this process a num
of times the system reaches a statistically stationary abs
ing state; the natural one~see @8# and references therein!.
Using this absorbing state for spreading leads to DP ex
nent values~and critical point! in systems with many absorb
ing states as for example, the pair contact process@25,31#.

By following this procedure, we have found a very pec
liar property of this model that we believe to be at the ba
of its deviating from DP. If the initial seed is located for a
avalanches in the same site~or small group of localized
sites!, as is usually the case, after a relatively small num
of avalanches the system reaches an absorbing configur
such that it is impossible to propagate activity for any po
sible forthcoming avalanche beyond a certain closed cont
For example, configurations as the one shown in Fig. 5~a! are
generated. The four sites at the center are the ones at w
activity seeds are placed in order to start avalanches. W
sites are active and gray ones are absorbing. At each mar
in-black site, the sum of the three~black! bonds connecting it

e

FIG. 2. Time evolution of the density of active sites forL
5256 and different values ofr in the active phase, namely, from
top to bottomr 51.381 43, 1.384 02, 1.385 27, 1.385 87, 1.386 1
1.386 30, 1.386 37, and 1.386 40, respectively. From the slop
the straight dashed line we estimateu50.275(15).
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4636 PRE 62PABLO I. HURTADO AND MIGUEL A. MUÑOZ
to sites other than a central one is smaller thanr c21
50.38 643(3). In this way, regardless of the value of th
bond connecting the site to the central region, the site
mains inactive; it is asuperabsorbing site. The existence of
‘‘inactive forever’’ sites has been already pointed out by L
powski @26,32#. In the configuration shown in Fig. 5~a!, ac-
tivity cannot propagate out of the ‘‘fence’’ of superabsorbi
sites; the cluster of superabsorbing sites will remain fro
indefinitely, and activity cannot possibly spread out. All av
lanches will necessarily die after a few time steps. This ty
of blocking structure is quite generic and appears in all
periments after some relatively short transient. In conclus
this way of iterating spreading experiments leads always
blocking closed configurations of superabsorbing sites
stead of driving the system to a natural absorbing configu
tion.

Observe that some activity put out of a blocking fence
sites in Fig. 5~a! could well affect any of the external bond
of the superabsorbing sites@the dangling black bonds in Fig
5~a!#, converting the corresponding site to an absorbing
even an active one. Therefore, in order to overcome
difficulty of the frozen blocking configurations and be able
perform spreading experiments in some meaningful way,
iterate avalanches by locating the initial seed at rando
chosen sites in the lattice. In this way there is always a n
vanishing probability of destroying blocking ‘‘fences’’ b
breaking them from outside as previously discussed. M
surements of the different relevant magnitudes are stop
when the system falls into an absorbing configuration

FIG. 3. Stationary density of active sites as a function of
distance to the critical point, forL5256 and different values ofr in
the active phase~the same values reported in Fig. 2!. The best fit
givesb50.40(2) andr c(L5256)'1.386 45. Filled~empty! circles
are used to represent scaling~not scaling! points.
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alternatively, whenever a linear distanceL/2 from the ava-
lanche origin is reached. Observe that in the second case
dynamics has to be run farther in order to reach a new
sorbing configuration at which to launch the next avalanc

We monitor the following magnitudes: the total numb
of active sites in all the runs as a function of timeN(t) ~we
also estimateNs(t) defined as the average number of acti
sites restricted to surviving runs!, the surviving probability
P(t), and the average square distance from the origin,R2(t).
At the critical point these are expected to scale asN(t)
;th, P(t);t2d and R2(t);tz. Results for these types o
measurements are reported in Fig. 6. We obtain rather g
algebraic behaviors at the previously estimated critical po
r c , confirming that the iteration-of-avalanches procedu
leads the system to a natural absorbing environment. Slig
subcritical~supercritical! values ofr generate downward~up-
ward! curvatures in this plot for all the four magnitudes. O
best estimates for the exponents at criticality are:z
50.96(1), h50.05(1), d50.66(1)~see Table I!. To double
check our results we also plotNs(t), which is expected to
scale with an exponenth1d. An independent measureme
of its slope in the log-log plot givesh1d50.71(1), in per-
fect agreement with the previously obtained results.

We can use these values to verify the hyperscaling r
tion @33,24#

h1d1u5
dz

2
. ~2!

e FIG. 4. Data collapse for the density of active sites:r8(L,D)
5r(L,D)Lb/n' andD85DL1/n'. Using the obtained exponent va
uesb/n''0.57 andn''0.69, a reasonably good data collapse
observed. In the inset we show an attempt to collapse data u
one-dimensional DP exponent values. There is no evidence of s
ing neither in this case nor using two-dimensional DP exponen
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PRE 62 4637SYSTEMS WITH SUPERABSORBING STATES
Substituting the found values forz and h1d, we obtainu
'0.25(2), compatible within error bars with the previous
determined valueu50.275(15).

One more check of the consistency of our results by us
scaling laws is the following. Asz52n' /n i @29#, we can
estimaten i from z andn' . Then, usingn i and the fact that
u5b/n i we obtainu50.27(1), again in excellent agreemen
with the directly measured value.

In Table I, we present the collection of exponents a
compare them with DP values in both one and two dim
sions @29#. There is no trace of dimensional reduction; th
model does not behave, at least up to the scales we
analyzed, as any other known universality class.

C. More about superabsorbing states

Let us recall our definition of superabsorbing states.
site, three of whose associated bonds take values such
the sum of them is smaller thatr 21, cannot be activated
from the remaining direction by neighboring activity. We s
that this site is superabsorbing in that direction~or it is in a
superabsorbing state!. A site can be superabsorbing in one
more than one directions. Still, a site in a superabsorb
state can obviously be activated by neighboring activity
any of the remaining directions~if any!.

FIG. 5. Different frozen configurations of superabsorbi
~black! sites. White~gray! color stands for active~absorbing! sites.
~a! Blocking configuration for spreading from the central cluster
four sites. Black sites cannot change their state whatever the sta
dynamics inside the cluster might be. Black bonds remain also
zen. ~b! Spanning frozen cluster of superabsorbing sites.~c!
Almost-frozen cluster of superabsorbing sites. This, and analog
structures, can be destabilized from the outside corners.
g

d
-

ve

hat

g

Having stated the existence of frozen clusters in stand
spreading experiments~when initialized from a fixed local-
ized set of sites!, one may wonder whether there are simil
frozen structures in simulations started with an homogene
initial distribution of activity, or in the modified type o
spreading experiments we have just used~i.e., allowing the
initial seed to land at a randomly chosen site! in the neigh-
borhood of the critical point.

In principle, for any finite lattice, the answer to that que
tion is affirmative. In Fig. 5~b! we show the shape of a froze
cluster of superabsorbing sites: any of the sites in it is sup
absorbing with respect to the corresponding outward dir
tion, and it cannot be ‘‘infected’’ from any of the other d
rections as neighboring sites are similarly superabsorbing
a cluster like that is formed~or put by hand on the initial
state! it will remain superabsorbing forever. However, th
probability of forming such a perfectly regular chain is e

f
or
-

us

FIG. 6. Numerical results for spreading experiments.R2(t) ~top-
most curve!, Ns(t) ~second curve from above!, N(t) ~third curve
from above!, andP(t) ~bottom curve!. From the slopes we estimat
z50.96(1) andh1d50.71(1), h50.05(1), andd50.66(1), re-
spectively.

TABLE I. Exponent values for the two-dimensional Lipows
model and directed percolation in both one and two dimensio
Figures in parentheses denote statistical uncertainty~note that error
bars are statistical errors coming from power-law fittings, and the
fore do not include eventual systematic corrections to scaling!.

Model b b/n' u h d z

Lipowski 0.40(2) 0.57(2) 0.275(15) 0.05(1) 0.66~1! 0.96(1)
DP, d51 0.276 0.252 0.159 0.313 0.159 1.265
DP, d52 0.583 0.795 0.450 0.229 0.450 1.132
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4638 PRE 62PABLO I. HURTADO AND MIGUEL A. MUÑOZ
tremely small for large system sizes. Observe also tha
order to have a completely frozen two-site broad-band st
ture it has to be unlimitedly long~or closed if periodic
boundary conditions are employed!. If instead it was finite,
then sites at the corners would be linked to two exter
susceptible-to-change bonds and, therefore, these sites w
be susceptible to become active because they would no
blocked forever. In this way any finite structure of supera
sorbing sites in the square lattice is unstable. It can be e
up ~though very slowly! by the dynamics and is therefore n
fully frozen. For instance, the cluster of superabsorbing s
represented in Fig. 5~c! is almost frozen but not really froze
as it may lose its superabsorbing character from the out
corners as previously described. Analogously, any ot
cluster shape of superabsorbing sites may be destabi
from its outside corners.

In conclusion, frozen clusters of superabsorbing sites
not appear spontaneously. However, almost-frozen reg
do appear and may have extremely long life spans, espec
close to the critical point where activity is scarce, and the
fore the possibility of destabilizing them is small. In order
give an idea of how frequently superabsorbing sites app
we present in Fig. 7 a snapshot of a typical system state
the critical point. White corresponds to active sites, while
remaining sites are absorbing: in black we represent su
absorbing~in one or more directions! sites, while simple ab-
sorbing~nonsuperabsorbing! sites are marked in gray colo
Observe that superabsorbing sites are ubiquitous; in fact
percolate through the system. Among them, about one-fo
are superabsorbing in all four directions.

Even though none of the clusters of superabsorbing s
is completely frozen, and in principle, activity could rea
any lattice site, the dynamics isglassy@34# in some sense
For instance, imagine an active region separated from

FIG. 7. Snapshot of a configuration in a 32332 lattice in the
stationary regime for a value ofr close to the critical point. White
color denotes activity, black corresponds to superabsorbing s
while gray stands for absorbing sites. Observe that superabso
sites percolate through the lattice.
in
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absorbing region by a line of superabsorbing-in-th
direction-of-the-activity sites. In order to reach the absorb
region, activity has to circumvent the superabsorbing barr
But near the critical point, where activity is scarce, barrie
of superabsorbing sites are intertwisted among them form
structures that, even if not completely frozen, are very
likely to be infected. Activity has to overcome them progre
sively in order to reach the interior of superabsorbing
gions. This resembles some aspects of glassy system
which degrees of freedom are hierarchically coupled and
observable timescales, they may appear effectively fro
@34#.

This phenomenology is certainly very different from D
and it is the reason why the relaxation toward station
states is so slow, and why deviations from mean values
so persistent in numerical simulations. In particular, as
perabsorbing regions are long-lived, the time required for
system to self-average is very large, and as near the cri
point the probability of reaching an absorbing state is lar
in practice, the system does not have the time to self-aver
Consequently, a huge amount of independent initial sta
and runs have to be considered in order to measure sm
well-behaved physical magnitudes@35#. We strongly believe
that this type of pathological dynamics is responsible for
departure of the Lipowski model from the DP universal
class in two dimensions.

At this point one might wonder whether the on
dimensional version of this model is essentially different.
in other words, why~one-dimensional! DP exponents are
observed ind51 @23#? The answer to this question is n
difficult if one argues in terms of superabsorbing sites. F
of all notice that ind52, r c.1. This means that just by
changing one bond, whatever the value of the output is,
site can stay below threshold if the other three bonds s
less thanr c21; this is to say superabsorbing states do ex
at criticality. However ind51, r c50.4409,1. In this case,
by changing one bond value it is always possible to activ
the corresponding site: superabsorbing sites do not exis
d51 at the critical point@36#. Once the ‘‘disturbing’’ ingre-
dient is removed from the model, we are back to the DP cl
as general principles dictate.

D. The honeycomb lattice

In order to further test our statement that superabsorb
states are responsible for the anomalous scaling of the
dimensional Lipowski model, we have studied the followin
variation of it. We have considered the model defined o
honeycomb lattice~with three bonds per site!, and performed
Monte Carlo simulations. In this case there is the~geometri-
cal! possibility of having completely frozen clusters of s
perabsorbing sites~see Fig. 8!. The main geometrical differ-
ence from the previous case comes from the fact that h
cluster corners are linked only to one external bond, a
therefore are more prone to form frozen clusters. In pr
ciple, before performing any numerical analysis, there
two alternative possibilities: either the critical point is lo
cated at a value ofr smaller than one or larger than one.
the first case, there would be no superabsorbing site~in anal-
ogy with the one-dimensional case!; in the second case, pa
thologies associated with superabsorbing sites should be

s,
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served. The caser c51 would be marginal. Finite-size
scaling analyses indicate the presence of a continuous p
transition located atr'1.0092 ~very nearby the margina
case, but significantly larger thanr 51).

For Monte Carlo simulations, we have employed lattic
of up to a maximum of 2563256 sites. All the observed
phenomenology is perfectly compatible with tw
dimensional DP behavior. The dynamics does not show
of the anomalies described for the square lattice case
particular, from the dependence of the stationary activ
density on system size we evaluateb/n50.80(1); from the
time decay at criticality, u50.45(1), and finally b
50.57(2); fully confirming consistency with two-
dimensional DP behavior. This result seems to be in con
diction with the two alternative possibilities presented abo
Let us now discuss why this is the case.

As the coordination number is three in this case, the s
of two bond values has to be smaller thanr c21'0.0092 in
order to have a superabsorbing site in the direction of
remaining bond at criticality. As the two bonds are indepe
dent random variables, the probability of creating a super
sorbing site if the two of them are changed is fewer th
0.5% and the probability of generating frozen clusters~com-
posed by six neighboring superabsorbing sites as show
Fig. 8! is negligible at the critical point. In fact, we have n
been able to observe any of them in our simulations. T
means that one should study extremely large system s
and extraordinarily long simulations in order to see anom
lies associated with superabsorbing sites, otherwise, for
feasible simulation the behavior is expected to be DP-li
The observation of DP exponents in this case strongly s
ports the hypothesis that superabsorbing states are at th
sis of the anomalous behavior of the model on the squ
lattice.

FIG. 8. Frozen cluster in the honeycomb lattice. This type
frozen structure of superabsorbing sites remains indefinitely su
absorbing at the critical point. Black: superabsorbing sites. G
absorbing sites. White: active sites.
ase

s

y
In
y

a-
.

m

e
-
b-
n

in

is
es
-

ny
.

p-
ba-
re

However, strictly speaking, the system should exhibi
~unobservable! first-order phase transition atr 51 in the
thermodynamic limit. Indeed, for values ofr larger than one
there is a finite, though extremely small, probability of cr
ating frozen clusters of superabsorbing sites~as the one in
Fig. 8!. As this is an irreversible process, after some~diver-
gently long! transient there would be a percolating netwo
of frozen clusters of superabsorbing sites, and the only p
sible stationary state would be an absorbing one with z
activity. On the other hand, for values ofr smaller than
unity, the probability of creating superabsorbing sites
strictly zero, and there will be a nonvanishing density
activity. As the density atr 51, almost independent of sys
tem size, isr'0.18, the transition is expected to be disco
tinuous, and therefore the DP transition observed in
simulations is merely a finite-size effect, and should dis
pear for large enough sizes and long times. In any case,
first-order transition is unobservable computationally.

IV. SUMMARY

Summing up, we have shown that the two-dimensio
Lipowski model does not belong to any known universal
class. We have measured different critical exponents by r
ning Monte Carlo simulations started from homogeneous
tial states and also by performing spreading experiments
any case, we find absolutely no trace of dimensional red
tion, and neither is there evidence for the system to behav
two-dimensional DP. Instead, a different type of scaling b
havior is observed. The main relevant physical ingredien
this class is the presence of superabsorbing sites, and alm
frozen clusters of superabsorbing sites that slow down e
mously the dynamics.

The previous conclusion is strongly supported by tw
other observations:~i! the regular DP behavior observed
the one-dimensional version of the model for which sup
absorbing states do not appear at criticality, and~ii ! the two-
dimensional DP behavior observed for the two-dimensio
model defined on a honeycomb lattice, for which the pro
ability of generating superabsorbing sites at criticality is
most negligible.

In general, superabsorbing sites can either arrange
completely frozen clusters or not depending on dimension
ity, coordination number and other system details. Let
distinguish three main cases.

~1! When completely frozen clusters of superabsorb
sites appear below~or above! a certain value of the contro
parameter but not above~below!, first-order transitions are
expected~as occurs in the multiplicative model discussed
Appendix B @32#!.

~2! If completely frozen clusters do not appear at critic
ity, but instead almost-frozen clusters are present, we ex
anomalous behavior~as occurs in the original Lipowsk
model @26#!.

~3! If neither frozen nor almost-frozen clusters are o
served at criticality~as is the case for the one-dimension
version of the model@23#! we expect standard directed pe
colation behavior.

Two possible followups of this work are the following.
~1! It would be worth studying in more realistic situation

as, for instance, in surface catalysis~dimer-dimer or dimer-
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trimer! models @13# whether effects similar to those de
scribed in this paper play any relevant role. In particular,
those models depending upon lattice and particle geom
there are cases in which activity cannot propagate to ne
boring regions but is constrained to evolve following certa
directions or paths. It would be rather interesting to sort
whether anomalies reported for those models@13# are related
to the existence of superabsorbing states.

~2! From a more theoretical point of view, an interesti
question is the following: What is the field theory or Lang
vin equation capturing the previously described phase t
sition with superabsorbing states? How does it change w
respect to Reggeon field theory? Establishing what
theory looks like would clarify greatly at a field theoretic
level the effect of superabsorbing states on phase transit
and would permit to shed some light on the degree of u
versality of this anomalous phenomenology. Our gues
that a Reggeon field theory@11,10# with a spatiotempora
dependent anisotropic Laplacian term~which, for example,
would enhance, not favor or forbid diffusion from certa
sites in certain directions! could be a good candidate to d
scribe this new phenomenology. Analogously to what h
pens in field-theoretical descriptions of other systems w
many a absorbing states@13,24#, the inhomogeneous
Laplacian-term coefficient should be described by a sec
physical field coupled to the activity field in such a way th
its fluctuations would vanish upon local absence of activ
Further pursuing this line of reasoning is beyond the scop
the present paper. As long as this program has not b
completed, is not safe to conclude unambiguously that

FIG. 9. Order parameter as a function ofr in the case of paralle
updating. The transition appears to be discontinuous in this c
exhibiting also a hysteresis loop.
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anomalies described in this paper are relevant in the limi
extremely large times and system sizes.
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APPENDIX A

As an alternative attempt to speed up the dynamics,
examine further some properties of the two-dimensio
model, we have implemented the microscopic dynamics
placing the original sequential updating by a synchronous
parallel one, i.e., all active sites are ‘‘deactivated’’ simult
neously at each Monte Carlo step, and all their associa
bonds are replaced by new random variables simultaneou
In this way, as random numbers do not have to be extrac
to sequentially select sites, the dynamics is largely acce
ated. For this modified dynamics, we have examined so
relatively large system sizes,L5256, and concluded that th
nature of the transition is changed with respect to the sequ
tial updating case. In this case the transition is first order
critical exponents cannot be defined. To show that this is
case, in Fig. 9 we present the stationary activity curve. T
upper curve corresponds to simulations performed taking
initial activity density equal to unity. On the other hand, t
lower curve is obtained by starting the system with a natu
absorbing configuration, and activating on the top of it
small percentage of sites~about 10%).

For values ofr in the interval@'1.545,'1.555# the sys-
tem reaches different states depending upon the initial c
dition. The presence of a hysteresis loop is a trait of
transition first-order nature. First-order absorbing-state tr
sitions have been observed in other contexts@37#. However,
we caution the reader that, as the transition is found to oc
at a value ofr for which the probability of creating superab
sorbing sites is very large~much larger than in the sequenti
case!, and the dynamics is therefore extremely anomalo
and slow, it could be the case that the first-order characte
the transition is only apparent. Extracting clean, conclus
results in the critical zone is a computationally very expe
sive task that we have not pursued.

APPENDIX B

Very recently, Lipowski has introduced a multiplicativ
version of his model on the square lattice in which sites
declared active if the product of the four adjacent bonds
smaller than a certain value of the control parameterr @32#.
Bonds take uncorrelated values in the interval@20.5,0.5#
extracted from a homogeneous distribution. For values or
smaller thanr 50 there is a finite~not small! probability of
generating superabsorbing sites. In this case, it is not diffi
to see that isolated superabsorbing sites remain frozen
ever. In analogy to the discussion of the honeycomb-lat
model, a first-order transition is expected atr c50 ~as dis-
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cussed also in@32#!. However, in this case, as the probabili
of creating superabsorbing sites is not negligible, the fi
order transition is actually observable. Based on a numer
measurement ofb, Lipowski concludes that the model shar
first-order properties with second-order features. In parti
lar, the transition is clearly shown to be discontinuous, th
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is no diverging correlation length, butb is claimed to be,
however, in the two-dimensional DP class. Our guess is
this apparent puzzle is simply due to a numerical coincide
and that in fact there is no trait of any second-order ph
transition feature~observe that the fit for beta in@32# spans
for less than half a decade in the abscise of the log-log pl!.
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